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We examine the stabilit y of particle orbits in alternating solenoid lattices. We show
that the equations of motion reduce to a form of the Mathieu equation. Stable orbits
are determined by particular values of the parameters of the Mathieu equation. These
parameters are then related to the momentum of the particle and the field strength and
period of the alternating solenoid lattice. Stabilit y predictions are shown to agree
exactly for a perfect sinusoidally-varying magnetic field. The stabilit y predictions do
not work for the alternating solenoid magnetic field pattern used in the muon colli der,
except for the fundamental resonance condition.
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1  Introduction

An alternating solenoid lattice has been designed by Palmer for transverse emittance cooling of
muon beams at a muon colli der [1-3]. The intention is to scale this lattice for use over a range of
incident transverse emittances that vary by a factor of about 300. Thus the question arises of how to
properly transform the lattice parameters in such a way as to obtain eff icient cooling, while at the
same time avoiding unstable regimes that are known to exist in alternating solenoid lattices [4].  

2   Relation to the Mathieu equation

The radial equation of motion of a charged particle in an electromagnetic field is given in cylindrical
coordinates as

For the case considered here E  is 0. The particle develops an angular momentum from crossing ther

fringe field at the end of the solenoid given by

We can use this relation to obtain the azimuthal velocity

Note that this is also the solution of the �  equation of motion in cylindrical coordinates when there
is no azimuthal acceleration. Substituting Eq. 3 back into Eq. 1, we find

Now approximate the field pattern in an alternating solenoid lattice with the leading term of a
Fourier expansion

Substituting Eq. 5 back into Eq. 4 gives
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Using the relations

we can transform Eq. 6 into the form

where

Finally, the transformation

allows us to write Eq. 8 as [4,6]

This can be compared with the canonical form of the Mathieu equation [7]

Thus we can identify the Mathieu parameters as
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If we use the relation

where 
�
 is the spatial period of the magnetic field, we can specify the Mathieu parameter q in terms

of the momentum of the particle and the magnetic field parameters as

It is known that the Mathieu equation can have a periodic solution if the parameters {q, a} of the
problem lie in certain restricted regions of the parameter space . The boundaries of the stable regions
are determined by the characteristic values { a , b } of the Mathieu equation. Fig. 1 shows a plot ofn n

these characteristic values as a function of q.

Fig.1 Characteristic values of the Mathieu equation. The solid (dashed) line shows
the characteristic value a (b ). The dotted line gives the constraint between ther r

parameters a and q for this problem.
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Fig. 2 shows a portion of the parameter space in greater detail . Periodic (i.e. stable) solutions exist
in regions of the plot where [6]

Fig.2 Characteristic values of the Mathieu equation in greater detail . The solid
(dashed) line shows the characteristic value a (b ). The dotted line gives ther r

constraint between the parameters a and q for this problem.
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We have tested this prediction by tracking particles through a field given by 

where I  and I  are modified Bessel functions. This field pattern satisfies Maxwell ’s equations. The0 1

particle momentum was fixed at 200 MeV/c, the period of the magnetic field was 2 m and the total
length of lattice was 30 m. The initial particle position (transverse momentum)  was selected from
a gaussian distribution with a standard deviation of 1 cm (10 MeV/c). A particle was considered to
be lost if the radius ever exceeded 15 cm. The magnetic field strength B  was chosen to give ao

parameter q values in the center of alternating stable and unstable bands. Transmissions were
determined using 500 tracks. Results using the Monte Carlo tracking code ICOOL are shown in
Table 1.

Table 1  Transmission through sinusoidal lattice

 q theory B  [ T ] Tr [%]o

0.179 S(table) 3.544 100

0.536 U(nstable) 6.133 0

1.429 S 10.02 100

2.321 U 12.76 0

3.93 S 16.61 100

5.36 U 19.40 0

7.50 S 22.94 100

9.46 U 25.77 0

12.23 S 29.30 100

14.46 U 31.86 0

We see there is perfect agreement with the predicted stabilit y for the pure sinusoidal lattice.
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3   Wavelength of par ticle’s betatron motion

From Eq. 6  we see that the radial motion is given by the equation

In general the particles undergo complicated trajectories through the lattice. Let us assume however
that the motion can be broken into a slow betatron motion combined with a fast motion characterized
by the lattice periodicity [8].

This should be a reasonable assumption so long as the betatron wavelength is large compared with
the lattice period. Substituting Eq. 19 into Eq. 18, we find

where

Now assume z is a linear function of time. If we take the time average of Eq. 20, the term
proportional to S  gives a factor of  ½, while the other terms multiplied by S or C average to 0. Then2

Eq. 20 reduces to

Since by definition the solution of the slow equation defines the betatron motion, we relate
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The spatial period 
�

 of the betatron motion is then given by

where in the second equation the units are { m, GeV/c, T}.

4   Stabili ty of the baseline alternating solenoid field

The actual B  magnetic field pattern for the 15 T, 3 m period, alternating solenoid transverse coolingZ

section is shown in Fig. 3  as a function of z. 

Fig. 3 Longitudinal field in the muon colli der alternating solenoid solution as a
function of z. 
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Significant deviations from a pure sine wave were required in order to match the beam from one
solenoid to the next and to obtain reasonable cooling factors in the complete system. A Fourier
decomposition of the field pattern is shown in Fig. 4. The dominant amplitude occurs as expected
at a frequency of 1/3 m, but the pattern has a significant harmonic content.

Fig. 4 Fourier decomposition of the muon colli der alternating solenoid magnetic
field.
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We have checked the transmission down 30 m of this lattice using the code ICOOL. For convenience
the peak magnetic field was fixed at 15 T and the period of the magnetic field was 3 m. The initial
particle position (transverse momentum)  was selected from a gaussian distribution with a standard
deviation of 1 cm (15 MeV/c). A particle was considered to be lost if the radius ever exceeded 11
cm. The particle momentum was chosen to give a parameter q values in the center of alternating
stable and unstable bands. Transmissions from 400  tracks are shown in Table 2.

Table 2  Transmission through AS 15T short lattice

 q theory p [ GeV/c ] Tr [%]

0.179 S(table) 1.269 100

0.536 U(nstable) 0.733 0

1.429 S 0.449 93.8

2.321 U 0.352 99.0

3.93 S 0.271 93.0

5.36 U 0.232 99.8

7.50 S 0.196 99.0

9.46 U 0.175 98.8

12.23 S 0.153 98.0

14.46 U 0.141 97.3

We see that, apart from the first predicted unstable value at q = 0.536, there is no longer any
correlation of the transmission through the lattice with the predicted stable and unstable regions.
There are regions where the transmission has minor dips to ~93%. Apparently the harmonic content
of the magnetic field is strong enough to smear out the precise relationships among the variables
required to maintain the unstable resonances. In a muon colli der there will be additional sources of
smearing from stochastic processes in the cooling materials and from interactions with the  rf
system. This is good news for the design of a cooling stage, since it means that, other than avoiding
the first strong resonance, we can optimize the parameters {p, B , � } entirely in terms of the coolingo

performance.
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5   Compar ison with resonance conditions

We can rewrite Eq. 15 as

where the units are { T, m, GeV/c }. The central stable and unstable values of this quantity are

stable = { 35.5, 100.2, 166.1, 229.5, 293.1, 363.3, ... }

unstable = { 61.3, 127.7, 194.0, 257.7, 318.7, ... }

Intuitively, we expect resonant loss of particles when a particle orbit takes the same path through
each magnet in the lattice. This occurs when an integer number of particle betatron wavelengths fit
exactly in a period of the lattice, or

where n is an integer. Using Eq. 24 for " , we can write this as

Resonant loss of particles would then occur for

unstable = { 59.2, 118.4, 177.6, 236.8, 296.0, 355.2, ... }

It is interesting that this sequence gets increasingly out of phase from the one from the Mathieu
equation. By the fifth value it predicts an unstable resonance at a location near the center of a stable
band of the Mathieu equation. Recall that Table 1 showed perfect transmission for this band for a
pure sinusoidal magnetic field. This is almost certainly caused by the failure of Eq. 24 to give an
accurate value for "  for these higher order resonances.
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